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The transient natural convection of a fluid with Prandtl number of order 200 in a 
two-dimensional square cavity has been numerically studied. One of the vertical walls of 
the cavity is kept at a constant (ambient) temperature and a constant heat flux is applied 
on the opposite wall. The other walls are adiabatic. Initially, a boundary layer is formed 
near the heated wall; subsequently, a large vortical structure is generated, together with 
an upper intrusion layer. As time progresses, the average temperature in the cavity 
increases, and a descending boundary layer is formed near the constant temperature wall. 
During the transition to the steady-state regime, a thermal stratification pattern is formed. 
The results are compared with the scale analysis presented by Patterson and Imberger 
(1980). 
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I n t r o d u c t i o n  

Transient natural convection in rectangular enclosures has 
been studied in an effort to understand the heat transfer 
properties of systems that are found both in nature and in 
engineering applications. Although a number of relevant 
studies have been reported in the literature in the last decade, 
the phenomenon is far from being properly understood, since 
it has proved to be extremely complex in nature. The studies 
have mostly been carried out with symmetric boundary 
conditions of instantaneous heating and cooling of opposite 
vertical sidewalls, although this is by no means the only 
possibility. Patterson and Imberger (1980) presented a scale 
analysis and established a classification of possible flows in a 
two-dimensional (2-D) rectangular enclosure in terms of three 
parameters: Rayleigh number (RanT), Prandtl number (Pr), 
and aspect ratio (,4). These authors predicted time, length, and 
velocity scales for the boundary layers in the regions next to 
the heated and cooled walls as well as for the intrusion layers 
that result from the discharge of the boundary-layer flows into 
the cavity. A notable feature predicted is that steady-state 
conditions can be approached via either monotonic or 
oscillatory flows, depending on the parameter values. 

Numerical solutions of the mass, momentum, and energy- 
balance equations that govern the flow have been obtained by 
several authors for a variety of parameter ranges. Most of the 
flow properties predicted by Patterson and Imberger have been 
corroborated, and novel detailed features have been discovered. 
A recent work in this line has been presented by Schladow et 
al. (1989) who described the following qualitative features. At 
the early stages, strong thermal gradients are present near the 
walls, due to the formation of the boundary and intrusion 
layers. Eventually, a stratified distribution of temperature is 
achieved in the core with nearly horizontal isotherms. The 
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vertical boundary layers are fed initially through entrainment 
along their whole vertical extension and then by the horizontal 
intrusion flows. High- and low-frequency oscillations have 
been detected as the flow develops; Schladow (1990) has 
interpreted the high-frequency oscillations that appear in the 
boundary layers at the early stages in terms of the flow 
generated by a suddenly heated vertical plate and its 
instabilities. The oscillating behavior of the flow has been 
observed and interpreted numerically by Schladow (1990) and 
numerically and experimentally by Patterson and Armfield 
(1990). Also, Armfield and Patterson (1991) studied the wave 
interaction in the system and suggested possible mechanisms 
for the transition to turbulence. Paolucci and Chenoweth (1989) 
studied the transition to chaos, and Paolucci (1990) made a 
direct numerical simulation of the turbulent flow. 

A feature of the laminar flow that has received much 
attention is a flow divergence that appears in the regions near 
the corners where the boundary layers meet the horizontal 
walls; its origin has been attributed to a hydraulic jump-like 
phenomenon. Schladow (1990) criticized this interpretation and 
suggested that the effect was due to a complex recirculation. 
Patterson and Armfield (1990) proposed that the discontinuity 
of the thermal boundary conditions across the corners 
contributes to the appearance of the divergence. Paolucci and 
Chenoweth (1989) made 2-D numerical experiments and found 
that the internal wave instability behavior is consistent with 
the critical Froude number criteria for internal "hydraulic 
jumps." 

Experimental investigations have confronted enormous 
difficulties, and consequently misinterpretation and con- 
troversy are very difficult to avoid. Experiments have to be 
designed to comply with initial and boundary conditions that 
are first devised in the theoretical work. Often trivially imposed 
initial conditions in theoretical models are extremely difficult 
to implement experimentally (e.g., instantaneous heating and 
cooling). Ivey (1984) performed experiments with Ra = 109, 
Pr = 7, and A = 1. Although some qualitative features of the 
flow were in agreement with the existing predictions, some 
other features were considerably different. The flow generated 
by a constant heat input in one of the side walls and a constant 
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(cold) temperature on the other was also observed by Yewell 
et al. (1982). Their observations did not show evidence of 
oscillations, pointing out a discrepancy with the Patterson and 
Imberger theory. Patterson (1984) clarified the point by 
demonstrating that the experiments were conducted in a 
nonosciUatory regime. Patterson and Armfield (1990) carefully 
matched experimental conditions to those assumed in their 
theoretical model for Ra = 3.26 × l0 s and Pr = 7.5. They 
explained a number of flow features and achieved satisfactory 
agreement between experimental observations and numerical 
analysis. 

In the present investigation, the problem of the transient 
natural convection in a rectangular cavity is studied using a 
numerical approach. The initial and boundary conditions differ 
from those reviewed above. A constant heat flux is 
instantaneously applied to the system through a vertical wall 
at the onset of the simulation, while the opposite wall is 
maintained at a constant temperature equal to the ambient one. 
The average temperature of the fluid inside the cavity rises 
monotonically and, eventually, the heat leaves the cavity 
through the constant-temperature wall, generating a steady- 
state flow. 

Numerical Model 

The problem under study is the natural convective flow inside 
a 2-D square cavity filled with an incompressible Newtonian 
fluid. The horizontal walls of the cavity are adiabatic and the 
left-hand-side vertical wall is kept at a constant ambient 
temperature T~. A constant heat flux q is applied at the 
fight-hand-side vertical wall at times t '= 0 and maintained 
thereafter. A schematic representation of the cavity and the 
coordinate system is presented in Figure 1. The spatial 
coordinates x' and y' are scaled with the height of the cavity h 
and the corresponding velocity components u' and v' with the 
magnitude v/h, where v is the kinematic viscosity of the fluid. 
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Schematic representation of the cavity 

Time is scaled with h2/v, the pressure with pov2/h 2, where po 
is the density of the fluid at temperature T~. The 
nondimensional temperature is defined as T = (T' - T'o)/qh/k, 
where k is the thermal conductivity of the fluid. 

Using the Boussinesq approximation and expressing the 
density as a linear function of  the temperature, the 
nondimensional  governing equations can be expressed as 
follows: 
Mass balance 

~u ~v 
- -  + - -  = o O) 
~x Oy 

Momentum balance in the x- and y-directions 
Ou ~u Ou dp 02u 02u 
- - + u  + v - - =  t- (2) 
t~t ~XX t3y ~3X ~X 2 -4- 0Y 2 

Ov Ov Ov Op ~2v 02v Ra 
- - + u  + v  . . . .  + - - + - - T  (3) 
t3t Ox ay cay + ~ 0y 2 Pr 

Notation 

g 
h 
k 

P 

p' 
Pr 
q 
Ra 
RaaT 

T 

T '  
T~ 
AT* 

t 

t' 
u 

Gravitational acceleration 
Height of the cavity 
Thermal conductivity 

p' 
Nondimensional pressure = - -  

pov2/h 2 

Dimensional pressure 
Prandtl number 
Heat flux 
Rayleigh number defined in terms of the heat flux 
Rayleigh number defined in terms of the temperature 
difference 

T ' - -  T~ 
Nondimensional fluid temperature = - -  

qh/k 
Dimens ional  fluid temperature 
Dimens ional  ambient and initial temperature 
Characteristic temperature difference near the 
heated wall 

t' 
Nondimensional time = - -  

h2/v 
Dimensional time 
Nondimensional velocity component in the 

U t 

x-direction = - -  
v/h 

U ! 

v~ 
V 

D t 

x 

x r 

Y 

y'  

Dimensional velocity component in the x-direction 
Velocity scale in the thermal boundary layer 
Nondimensional velocity component in the 

f f  
y-direction = - -  

v/h 
Dimensional velocity component in the y-direction 

X ~ 
Nondimensional spatial coordinate = - -  

h 

Spatial coordinate 
y' 

Nondimensional spatial coordinate = - -  
h 

Spatial coordinate  

Greek symbols 

6T 
AT 
V 
Po 
T 

~f 
Tv 

Thermal diffusivity 
Thermal expansion coefficient 
Thickness of vi~mus boundary layer 
Thickness of thermal boundary layer 
Thickness of the intrusion layer 
Kinematic viscosity 
Reference value of density (initial value) 
Time scale for the formation of the boundary layer 
Filfing time 
Time of arrival of the intrusion layer at the 
constant-temperature wall 
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Energy balance 

¢9T OT dT 1 fO2T ¢92T~ 
- - + U  + V - - = - -  
0t ~X 0y Pr ~ ,~x 2 + ~y2J  (4) 

! 

The relevant nondimensionai parameters are the Prandtl 
number 

Pr = v/~ 

and the Rayleigh number as defined by the expression 

g~qh 4 
R a = - -  

kvoc 

where/~, g, and ~ are the volumetric expansion coefficient, the 
acceleration due to gravity, and the thermal diffusivity, 
respectively. It must be noted that the definition of the Rayleigh 
number differs from that used in the scale analysis of Patterson 
and Imberger (PI) by a factor of AT/(qh/k). When the PI 
analysis is used, the numerical values of the limits will be 
modified accordingly (see Appendix). 

The initial and boundary conditions considered are 

u(x,y,O)=t,(x,y,O)=O for O < x < l  O < y < i  

T(x,y,O)=O for O<x_q<l O < y < l  

u(x,O,t)=v(x,O,t)=O for O < x < l  t > O  

u(x, l , t )=v(x, l , t )=O for O < x < l  t > O  

u(O,y,t)=v(O,y,t)=O for O < y < l  t > O  

u(1,y,t)=v(1,y,t)=O for O < y < l  t > O  

T(O,y,t)=O for 0 < y < l  t > O  

aT(1,y , t ) /Ox=-I  for O < y < l  t > O  

OT(x, O, t)/ay = fiT(x, 1, t)/Oy = 0 for 0 ~ x _< 1 t > 0 

The model has been presented in nondimensionai form for the 
sake of generality, although the system of equations is actually 
solved using a primitive, dimensional variables formulation. A 
cavity size of 13 cm by 13 em was considered, and the physical 
properties of the working fluid were those corresponding to 
Silicon Oil with 20 centistokes kinematic viscosity. The 
numerical solution was obtained using the PHOENICS code, 
which is based on a method similar to the SIMPLE algorithm 
discussed by Patankar (1989). 

A grid-refinement study was carried out to obtain a 
grid-independent solution. The program was run using grids 
with 41 x 41, 81 x 81, and 101 x 101 control volumes. The 
volumes were unevenly distributed according to a quadratic 
function, in order to have higher spatial resolution near the 
walls. In Figure 2a, the temperature and vertical velocity are 
shown as functions of the horizontal coordinate and y = 0.5. 
The data in this figure were obtained at t = 6.5 x 10 -2 
non-dimensionai time units when the boundary layers have 
already been established. The temperature and the horizontal 
velocity as functions of the vertical coordinate for x = 0.5 and 
t = 0.16 are shown in Figure 2b; at this stage, the "nose" of 
the intrusion layer has passed the point x = 0.5. The qualitative 
behavior for all cases is the same, and the results obtained with 
the 101 x 101 and 81 x 81 are almost equal. The maximum 
difference between the coarser and the finer grids is 10 percent 
in the velocity and 2 percent in the temperature, in most cases 
the difference was significantly smaller. All the results reported 
in this study were obtained with the 81 x 81 grid. The time 
step used in the integration is 1.4 x 10 -3. This value was 
considered satisfactory, since further refinement to 3 x 10 -4 
yielded results that differed by less than 4 percent. It was 
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Figure 2a Vertical component of the velocity (v) and temperature 
(T) as functions of xfor y--0.5 and t-.  6.5 x 10 .2 
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Figure 2b Horizontal component of the velocity (u) and 
temperature (T) as functions of yfor x-- 0.5 and t =  0.16 

considered that convergence was attained when the overall sum 
of the residuals in the mass, momentum, and energy equations 
was less than 2 percent of the corresponding quantity contained 
in the integration domain, and the heat balance due to sources 
and sinks, including the boundaries, was better than 2 percent 
in steady state. 

R e s u l t s  

All results presented in this section were obtained considering 
Ra -- 3.9 x 109 and Pr = 224. The time interval analyzed spans 
a total of 4.4 nondimensional time units. ARer this period, the 
flow pattern is practically equal to that in steady state. In all 
velocity field figures, the reference vector corresponds to 25 
nondimensionai velocity units'. 

Initially, a boundary layer starts developing along the heated 
wall, and an ascending flow is generated that turns near the 
top right corner. The fluid enters the boundary layer mostly 
from the bottom region of the cavity, generating an incipient 
vortical structure. The corresponding temperature field features 
a steep horizontal gradient in a thin region close to the hot 
wall, while the core of the cavity remains isothermal. At this 
stage, heat is transferred to the cavity mostly by conduction. 

At t = 3.3 x 10 -2 the velocity field shown in Figure 3a 
indicates a general acceleration of the flow and a thicker layer 
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Velocity vectors at t = 3.3 x 10 -2. The scale corre- Figure 3a 
spends to 25 nondimensional velocity units 

b ~"  

Figure 3b Temperature contours at t = 3,3 x 10 -2. The tempera- 
tures are multiplied by 103, and the difference between consecutive 
isotherms is 3.56 x 10 -~ 
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Figure 4a Velocity vectors at t = 4 . 9  x 10 -2. The scale corre- 
sponds to 25 nondimensional velocity units 

along the heated wall. The vortex in the cavity is clearly formed, 
and its center is shown to be located at x = 0.81, y = 0.59. A 
small temperature gradient starts developing at the upper 
right-hand corner of the cavity, as can be appreciated from 
Figure 3b. At 4.9 x 10 -2 time units (Figure 4a), the vortex 
covers a larger part of the cavity, and its center has moved 
slightly towards the top wall and away from the heated wall 
to x = 0.78, ,y = 0.64. The discharge flow from the boundary 

layer runs parallel to the top wall and then goes to the core 
and joins the vortical flow. A nonisothermal region is formed 
near the upper boundary due to the displacement of the hot 
fluid from the boundary layer, as shown in Figure 4b; this is 
the beginning of the intrusion layer. 

Figure 5a, obtained at t = 8.2 x 10 -2, presents similar 
features; the vortical structure covers almost the entire cavity, 

I b 

Figure 4b Temperature contours at t = 4.9 × 10 -2. The tempera- 
tures are multiplied by 103 and the difference between consecutive 
isotherms is 3.56 x 10 -3  
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Figure 5a Velocity vectors at t = 8.2 x 10 -2. The scale corre- 
sponds to 25 nondimensional velocity units 
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Figure 5l) Temperature contours at t =  8.2 x 10 -2. The tempera- 
ture= are multiplied by 103, and the difference between consecutive 
isotherms is 4.53 x 10 -3  
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and the flow discharged from the boundary layer at the upper 
part of the cavity forms a thick horizontal stream. The 
boundary layer is fed through entrainment at a region that 
extends from the lower wall to approximately three quarters 
of the cavity height. The thermal boundary layer is now well 
defined, and hot fluid turns around the corner and forms the 
intrusion layer that advances towards the constant-tempera- 
ture wall, as shown in Figure 5b. At this stage, although the 
dynamic effects are felt in the whole volume, the thermal 
gradients are confined to small regions near the hot wall and 
the upper right-hand-side corner. At t = 0.16, the vortex is 
thinner and its center has moved to x = 0.80 and y = 0.59 
(Figure 6a). It can also be observed from this figure that as the 
fluid moving parallel to the top wall meets the constant- 
temperature wall, it starts moving downwards but then turns 
back to the heated wall. This behavior can be understood by 
noting that the density of the fluid in the advancing region and 
in the vicinity of the constant-temperature wall are nearly the 
same at this stage, since the temperatures are similar (Figure 
6b). 

Figure 7a (t = 0.26) shows that the vortical structure has 
become thinner in the upper part of the cavity and its center 
has moved downwards. This results from the interaction of the 
intrusion layer with the constant-temperature wall and the 
returning flow. At this time, the hot fluid in the intrusion layer 
has roached the constant-temperature wall (Figure 7b), 

Figure 6a Velocity vectors at t =  0.16. The scale corresponds to 
25 nondimensional velocity units 

b ~ 

Figure 6b Temperature contours at t == 0.16. The temperatures are 
mult ipl ied by 10 3, and the difference between consecutive 
isotherms is 5.13 x 10 -3 
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Figure 7a Velocity vectors at t = 0.26. The scale corresponds to 
25 nondimensional velocity units 

b ~ ~ 

Figure 7b Temperature contours at t = 0.26. The temperatures are 
multipl ied by 103 , and the difference between consecutive 
isotherms is 5.77 x 10 -3 

The velocity field corresponding to t = 0.69 (Figure 8a) 
features an important new effect due to the initial conditions 
chosen in the study. At previous times, the constant- 
temperature wall and the fluid in its vicinity are at 
approximately the same temperature, and therefore no natural 
convective flow is induced. As time progresses, however, the 
fluid inside the cavity experiences a net heating, and a thermal 
gradient is established between the fluid and the constant- 
temperature wall. This in turn generates a descending boundary 
layer, as can be observed in Figure 8a. The corresponding 
temperature field shown in Figure 8b displays the formation 
of a stratified pattern in the upper region of the cavity. 

Finally, at t = 2.5 (Figure 9a), the vortical flow near the 
center of the cavity has disappeared, and the flow is confined 
to the regions near the walls. The boundary layer near the 
constant-temperature wall and the intrusion layer along the 
bottom wall are not as well developed as their counterparts. A 
more symmetric pattern is obtained at later times when the 
system has almost reached steady state, as can be seen from 
Figure 10a, which was obtained at 4.4 time units. Figures 9b 
and 10b show how the thermal stratification pattern covers the 
majority of the cavity. 

Figures l l a  and l lb  show the flow and temperature fields 
obtained by performing the integration without the temporal 
term in the transport equations. The results at 4.4 time units 
are very similar to the steady-state solution. It is important to 
notice that although the boundary conditions are different, the 
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Figure 8a Velocity vectors at t = 0.69. The scale corresponds to 
25 nondimensional velocity units 

T-17  ~7 

Figure 9b Temperature contours at t = 2.5. The temperatures are 
multipl ied by 103 , and the difference between consecutive 
isotherms is 5.79 x 10 -3 

J 

Figure 8b Temperature contours at t = 0.69. The temperatures are 
multipl ied by 103 and the difference between consecutive isotherms 
is 6.12 x 10 -3 
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Figure lOa Velocity vectors at t = 4.4. The scale corresponds to 
25 nondimensional velocity units 
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Figure 9a Velocity vectors at t = 2.5. The scale corresponds to 25 
nondimensional velocity units 
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Figure lob Temperature contours at t = 4.4. The temperatures are 
multipl ied by 103, and the difference between consecutive 
isotherms is 5.1 x 10 -3 
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Figure 1 la Velocity vectors in steady state. The scale corresponds 
to 25 nondimensional velocity units 

The horizontal velocity component for x = 0.5 and different 
vertical positions is shown in Figure 13. As explained below, 
this figure reflects the global behavior of the flow presented in 
Figures 2 to 10. Initially an acceleration takes place, and then 
the vortex motion manifests itself as a damped oscillation with 
two or three cycles. The origin of these oscillations is different 
from those predicted by Patterson and Imberger. In fact, the 
criteria for oscillatory flow in the PI  analysis is RaAr > Pr" 
(Ra > Pr 5) for the unity aspect ratio, and it is not met in the 
present case. The PI cavity scale oscillations are produced by 
horizontal thermal gradients in the intrusion layer and tilting 
of the isotherms. In the present case, the oscillations are the 
consequence of the interaction of the vortex structure with the 
wall, in particular with the upper righ-hand corner, and the 
returning flow from the intrusion layer. The oscillations take 
place at the beginning of the flow (t < 0.2), before the intrusion 
layer has reached the constant-temperature wall and therefore 
when most of the fluid in the cavity is isothermal. These kinds 
of oscillations have also been found by Hyun and Lee (1989) 
for similar Prandtl and Rayleigh numbers but with constant 
wall temperatures on both sides. 

_/  
I ~ l t . W  

T = 5 . 1  

Figure 11b Temperature contours in steady state. The tempera- 
tures are multiplied by 103, and the difference between consecutive 
isotherms is 5.1 x 10 -3 

flow near the heated and top walls is almost symmetric to that 
close to the constant-temperature and lower walls. The flow 
pattern is similar to that obtained by Kimura and Bejan (1984) 
for constant heat flux in opposite sides of the cavity. A vertical 
temperature gradient is established in the whole volume. 
Departures from this behavior are only found near the vertical 
walls where boundary layers modify the temperature 
distribution. 

Histor ies o f  velocit ies 

Figure 12 shows histories of the vertical velocity component 
(v) near the hot wall (at x = 0.99) at different vertical positions. 
The time scale is logarithmic in order to display clearly the 
initial behavior. At the higher positions (y = 0.90 and y = 0.75), 
the velocity displays a sharp maximum. At the lower positions 
(y = 0.10 and y = 0.25), the flow velocity also increases rapidly 
at the onset of the flow but then decreases slowly to attain its 
steady state value. At the beginning, all traces (except "e") 
coincide; subsequently, they diverge. This phenomenon is 
known in the context of the transient boundary layer on a 
vertical plate as ~the leading-edg~ effect" (see Gebhart and 
Mahajan 1982). It should be noted that the maximum velocity 
is not attained at the highest position (y -- 0.9) but at y = 0.75. 
This effect is due to the presence of the top wall, which creates 
an accumulation of pressure near the corner. 
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Figure 12 Histories of the vertical velocity component (v) near the 
hot wal l  ( x =  0.99). (a) y =  0.1; (b) y =  0.25; (c) y =  0.5; (d) 
y = 0.75; and (e) y = 0.9 
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Figure 13 Histories of the horizontal veloci ty component (u) at 
x = 0.5. (a) y = 0.5; (b) y = 0.75; and (c) y = 0.9 
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Figure 14 Histories of temperature at the hot wall (x= 1). (a) 
y = 0.1 ; (b) y = 0.25; (c) y ffi 0.5; (d) y = 0.76; and (e) y = 0.9 
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Figure 15 Histories of temperature near the constant-temperature 
wall (x--.O.01). (a) y ffiO.1; (b) y-0.26;  (c) y=0.5; (d) 
y = 0.75; and (e) y = 0.9 

Histor ies o f  temperatures  

Figures 14 and 15 show the temperature variation with time at 
the heated wall (x = 1.0) and near the constant-temperature 
wall (x = 0.01), respectively, at five different vertical positions. 
It can be observed in Figure 14 that initially the temperatures 
increase monotonically at the same rate for all points; it must 
be noted that heat transfer takes place mainly by conduction 
for t < 10-2. However, higher positions subsequently acquire 
higher temperatures due to the greater importance of 
convection in the boundary layer. Eventually, a vertical 
gradient is established. In Figure 15, it is important to notice 
that the temperatures do not change immediately after the 
heating of the cavity has started. The lag reflects the time taken 
by the hot fluid layer to reach the constant-temperature wall. 

Discussion and conclusions 

The numerical results obtained in the present investigation 
have been compared to the scale analysis of Patterson and 
Imberger, which was modified so that it could be applied for 
constant heat input conditions (see Appendix for details). Table 

Table 1 Comparison of the Patterson and Imberger modified 
analysis and the numerical results of the present work 

Scales Patterson and Present 
I mberger results 

Formation time of boundary 
layer, z 3.3 x 10 -2 4 x 10 -2 

Thickness of thermal 
boundary layer, ~T 1.2 x 10 -2 2.5 x 10 -2 

Thickness of viscous 
boundary layer, 6~ 0.18 (0.15-0.23) 

Velocity in the boundary 
layer, VT 30 20 

Arrival time of the 
intrusion layer at the 
constant temperature wall, ~, 9.8 x 10 -2 1.1 x 10-1 

Thickness of intrusion 
layer, AT 0.036 0.07 

Time to heat the whole 
volume of fluid, ef 
(filling time) 2.4 > 4.4 

1 shows scales according to the two analyses. The agreement 
is satisfactory, indicating the consistency of the two approaches. 
Obviously, the nature of the comparisons is qualitative, and in 
some instances, a range of values is given for the numerical 
results. The approximate arrival time of the intrusion layer zv 
coincides, in spite of the fact that the Patterson and Imberger 
analysis assumes a constant mass flow in the thermal boundary 
layer during the time taken by the intrusion layer to move 
towards the constant temperature wall, and this is not the case 
in the present numerical results. The time taken by the fluid to 
reach steady-state found with the numerical calculation is 
longer than that of the scale analysis by a factor of two. The 
reason for this is that in the PI analysis, the thermal boundary 
conditions on the vertical walls are symmetric and the 
boundary layers are formed simultaneously, in contrast, in the 
case studied here, the boundary layer near the constant- 
temperature wall develops only after the fluid temperature has 
risen enough to establish a thermal gradient between itself and 
the constant-temperature wall. 

It is likely that the presence of the vortical flow in the nearly 
isothermal cavity is due to the high Prandtl number used in 
the analysis. In these cases, the momentum transfer to the core 
from the viscous boundary layer is faster than the heat transfer. 

The system studied presents four main time scales that are 
obviously dependent on each other but determined by different 
physical phenomena. The first scale is given by the formation 
of the boundary layer adjacent to the constant-heat-input wall 
(~4  × 10-2); the arrival of the intrusion layer at the 
constant-temperature wall determines the second (~0.I); the 
third is defined by the presence of the vortical structure (~ 0.7). 
The fourth time scale is determined by the formation of the 
boundary layer next to the constant temperature wall, which 
leads to the steady state (~  3.5). 

Appendix:  Adaptat ion  of the 
P a t t e r s o n - l m b e r g e r  s c a l e  a n a l y s i s  

In the PI case, where the two vertical walls of the cavity are 
kept at constant (but different) temperatures, the definition of 
the Rayleigh number is 

Ra~r ---- g~ATh 3 (A.1) 
v0{ 
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where ATis  the temperature difference between either wall and 
the initial fluid temperature. In the present case, a natural 
definition of the Rayleigh number is 

a~qh" 
Ra = ~ (A .2 )  

=vk 

It is convenient to define a characteristic temperature difference 
AT* at the heated wall as follows: 

AT* ~ - -  q6T (A.3) 
k 

where 6T is the thickness of the thermal boundary layer. 
According to PI analysis, the velocity scale during the 
formation of the boundary layer is 

@ATV 
v ~ - -  (A.4) 

Pr  

Using the temperature difference given in Equation A.3 as ~ e  
characteristic temperature gradient, the velocity scale becomes 

gflq6Tt' (A.5) 
P r k  

or 

tT,~ 

0/~q=t/2f s/2 
(A.6) 

Pr k 

Equation A.6 was written using the expression 6T ~ o~1/2~I/2 
from the PI analysis. Once the boundary layer has developed, 
3T = h/RaAl~. Using this definition and AT*, the following 
relation is obtained: 

RaA, = Ra 't/s (A .7 )  

The time, thickness, and velocity can then be written in terms 
of Ra as 

hZ 
~ - -  (A.8)  

ctRa2/s 

h 
6, ~ - -  (A.9) 

Ral/S 

~Ra2/s 
VT ~ - -  (A.IO) 

h 

Transient natural convection in a cavity: F. Poujol et al. 

In similar form, the arrival time and thickness of the intrudon 
layer can be expressed as 

h 2 
~, ctRaT/2o (A.I 1) 

h 
A ,  ~ - -  (A.12) 

Raa/2o 
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